Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : FASEB journal : official publication of the Federation of American Societies for Experimental Biology

The 4 Notch receptors play distinct and antagonistic roles in the proliferation and hepatocytic differentiation of liver progenitors

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in FASEB journal : official publication of the Federation of American Societies for Experimental Biology - 21 Oct 2013

Ortica S, Tarantino N, Aulner N, Israël A, Gupta-Rossi N

Link to Pubmed [PMID] – 24145721

FASEB J. 2014 Feb;28(2):603-14

The Notch signaling pathway is involved in liver development and regeneration. Here, we investigate the role of the 4 mammalian Notch paralogs in the regulation of hepatoblast proliferation and hepatocytic differentiation. Our model is based on bipotential mouse embryonic liver (BMEL) progenitors that can differentiate into hepatocytes or cholangiocytes in vitro and in vivo. BMEL cells were subjected to Notch antagonists or agonists. Blocking Notch activation with a γ-secretase inhibitor, at 50 μM for 48 h, reduced cell growth by 50%. S-phase entry was impaired, but no apoptosis was induced. A systematic paralog-specific strategy was set using lentiviral transduction with constitutively active forms of each Notch receptor along with inhibition of endogenous Notch signaling. This assay demonstrates that proliferation of BMEL cells requires Notch2 and Notch4 activity, resulting in significant down-regulation of p27(Kip1) and p57(Kip2) cyclin-dependent kinase inhibitors. Conversely, Notch3-expressing cells proliferate less and express 3-fold higher levels of p57(Kip2). The Notch3 cells present a hepatocyte-like morphology, enhanced multinucleation, and a ploidy shift. Moreover, Notch3 activity is conducive to hepatocytic differentiation in vitro, while its paralogs impede this fate. Our study provides the first evidence of a functional diversity among the mammalian Notch homologues in the proliferation and hepatocytic-lineage commitment of liver progenitors.