Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Uwe Maskos
Tranche d'hippocampe de souris colorée avec deux toxines spécifiques de sous-types de récepteur nicotinique, en rouge (grains), et en vert (corps cellulaires). L'hippocampe est la zone du cerveau qui gère la mémoire spatiale.
Publication : Developmental biology

Stem cell growth becomes predominant while neural plate progenitor pool decreases during spinal cord elongation

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Developmental biology - 29 Dec 2006

Roszko I, Faure P, Mathis L

Link to Pubmed [PMID] – 17258701

Dev. Biol. 2007 Apr;304(1):232-45

The antero-posterior dispersion of clonally related cells is a prominent feature of axis elongation in vertebrate embryos. Two major models have been proposed: (i) the intercalation of cells by convergent-extension and (ii) the sequential production of the forming axis by stem cells. The relative importance of both of these cell behaviors during the long period of elongation is poorly understood. Here, we use a combination of single cell lineage tracing in the mouse embryo, computer modeling and confocal video-microscopy of GFP labeled cells in the chick embryo to address the mechanisms involved in the antero-posterior dispersion of clones. In the mouse embryo, clones appear as clusters of labeled cells separated by intervals of non-labeled cells. The distribution of intervals between clonally related clusters correlates with a statistical model of a stem cell mode of growth only in the posterior spinal cord. A direct comparison with published data in zebrafish suggests that elongation of the anterior spinal cord involves similar intercalation processes in different vertebrate species. Time-lapse analyses of GFP labeled cells in cultured chick embryos suggest a decrease in the size of the neural progenitor pool and indicate that the dispersion of clones involves ordered changes of neighborhood relationships. We propose that a pre-existing stem zone of growth becomes predominant to form the posterior half of the axis. This temporal change in tissue-level motion is discussed in terms of the clonal and genetic continuities during axis elongation.