Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • MD-PhD Student
  • Medical Staff
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • MD-PhD Student
  • Medical Staff
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Lost your password?
Go back
Scroll to top
Share
© Melody Merle
Fluorescently labeled five day old gastruloid, a mouse embryonic stem-cell derived pseudo-embryo.
Publication : Science advances

Size-dependent temporal decoupling of morphogenesis and transcriptional programs in pseudoembryos.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Science advances - 22 Aug 2025

Bennabi I, Hansen P, Merle M, Pineau J, Lopez-Delisle L, Kolly D, Duboule D, Mayran A, Gregor T

Link to Pubmed [PMID] – 40845108

Link to DOI – 10.1126/sciadv.adv7790

Sci Adv 2025 Aug; 11(34): eadv7790

Understanding the interplay between cell fate specification and morphogenetic changes remains a challenge in developmental biology. Gastruloids, stem cell models of postimplantation mammalian development, provide a platform to address this question. Here, using quantitative live imaging and transcriptomic profiling, we show that physical parameters, particularly system size, affect morphogenetic timing and outcomes. Larger gastruloids exhibit delayed symmetry breaking, increased multipolarity, and prolonged axial elongation, with morphogenesis driven by size. Despite these variations, transcriptional programs and cell fate composition remain stable across a broad size range, illustrating the scaling of gene expression domains. In particular, extreme sizes show distinct transcriptional modules and shifts in gene expression patterns. Size perturbation experiments rescued the morphogenetic and pattern phenotypes observed in extreme sizes, demonstrating the adaptability of gastruloids to their effective system size. These findings position gastruloids as versatile models for dissecting spatiotemporal coordination in mammalian development and reveal how physical constraints can decouple gene expression programs from morphogenetic progression.