Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Christine Schmitt, Sophie Goyard, Jean-Marc Panaud
Trypanosoma cruzi - trypomastigote form. Trypanosoma cruzi is the etiological agent of Chagas disease.
Publication : Molecular and biochemical parasitology

Site-specific DNA double-strand breaks greatly increase stable transformation efficiency in Trypanosoma brucei

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Molecular and biochemical parasitology - 01 Aug 2009

Glover L, Horn D

Link to Pubmed [PMID] – 19459229

Mol. Biochem. Parasitol. 2009 Aug;166(2):194-7

Genetic manipulation in African trypanosomes typically relies upon electroporation with chromosomal integration of DNA constructs by homologous recombination. Relatively little is known about chromosomal recombination and repair in these organisms however and low transformation efficiency and position effects can limit forward genetic approaches. In yeast and mammalian cells, site-specific DNA double-strand breaks (DSBs) stimulate targeted integration through homologous recombination-based repair where the exogenous DNA serves as the template. We have explored the effect of DSBs on targeted integration in bloodstream-form Trypanosoma brucei, focusing on the ribosomal RNA-spacer target commonly used to integrate recombinant constructs. DSB-repair within the ribosomal RNA tandem gene-repeats is likely dominated by single-strand annealing allowing approximately 80% of cells to survive the break. In the presence of exogenous DNA, transformation efficiency is increased approximately 250-fold by DSB-induction. In the example presented, more than 1% of cells that survive the procedure were transformed generating 80,000 transformants from a typical experiment.