Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Genome research

Similar compositional biases are caused by very different mutational effects

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Genome research - 26 Oct 2006

Rocha EP, Touchon M, Feil EJ

Link to Pubmed [PMID] – 17068325

Genome Res. 2006 Dec;16(12):1537-47

Compositional replication strand bias, commonly referred to as GC skew, is present in many genomes of prokaryotes, eukaryotes, and viruses. Although cytosine deamination in ssDNA (resulting in C–>T changes on the leading strand) is often invoked as its major cause, the precise contributions of this and other substitution types are currently unknown. It is also unclear if the underlying mutational asymmetries are the same among taxa, are stable over time, or how closely the observed biases are to mutational equilibrium. We analyzed nearly neutral sites of seven taxa each with between three and six complete bacterial genomes, and inferred the substitution spectra of fourfold degenerate positions in nonhighly expressed genes. Using a bootstrap procedure, we extracted compositional biases associated with replication and identified the significant asymmetries. Although all taxa showed an overrepresentation of G relative to C on the leading strand (and imbalances between A and T), widely variable substitution asymmetries are noted. Surprisingly, all substitution types show significant asymmetry in at least one taxon, but none were universally biased in all taxa. Notably, in the two most biased genomes, A–>G, rather than C–>T, shapes the compositional bias. Given the variability in these biases, we propose that the process is multifactorial. Finally, we also find that most genomes are not at compositional equilibrium, and suggest that mutational-based heterotachy is deeply imprinted in the history of biological macromolecules. This shows that similar compositional biases associated with the same essential well-conserved process, replication, do not reflect similar mutational processes in different genomes, and that caution is required in inferring the roles of specific mutational biases on the basis of contemporary patterns of sequence composition.

http://www.ncbi.nlm.nih.gov/pubmed/17068325