Link to Pubmed [PMID] – 18292544
J Immunol 2008 Mar; 180(5): 3201-9
Improvement of the strategy to target tumor Ags to dendritic cells (DCs) for immunotherapy requires the identification of the most appropriate ligand/receptor pairing. We screened a library of Ab fragments on mouse DCs to isolate new potential Abs capable of inducing protective immune responses. The screening identified a high-affinity Ab against CD36, a multi-ligand scavenger receptor primarily expressed by the CD8alpha+ subset of conventional DCs. The Ab variable regions were genetically linked to the model Ag OVA and tested in Ag presentation assays in vitro and in vivo. Anti-CD36-OVA was capable of delivering exogenous Ags to the MHC class I and MHC class II processing pathways. In vivo, immunization with anti-CD36-OVA induced robust activation of naive CD4+ and CD8+ Ag-specific T lymphocytes and the differentiation of primed CD8+ T cells into long-term effector CTLs. Vaccination with anti-CD36-OVA elicited humoral and cell-mediated protection from the growth of an Ag-specific tumor. Notably, the relative efficacy of targeting CD11c/CD8alpha+ via CD36 or DEC205 was qualitatively different. Anti-DEC205-OVA was more efficient than anti-CD36-OVA in inducing early events of naive CD8+ T cell activation. In contrast, long-term persistence of effector CTLs was stronger following immunization with anti-CD36-OVA and did not require the addition of exogenous maturation stimuli. The results identify CD36 as a novel potential target for immunotherapy and indicate that the outcome of the immune responses vary by targeting different receptors on CD8alpha+ DCs.