Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Thomas Wollert
Publication : Methods in cell biology

Reconstituting multivesicular body biogenesis with purified components

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Methods in cell biology - 01 Jan 2012

Wollert T

Link to Pubmed [PMID] – 22325598

Methods Cell Biol. 2012;108:73-92

Activated cell surface receptors are rapidly removed from the plasma membrane through clathrin mediated endocytosis and transported to the endosome where they are either recycled or sorted to the lysosomal pathway to be degraded. Receptors, destined for degradation in the lysosome, are packaged into intraluminal vesicles (ILVs) of endosomes by a reaction that is topologically unrelated to other budding reactions in cells. First, receptors are clustered at the endosomal membrane and receptor-rich membrane patches then bud towards the lumen of the endosome. The nascent membrane buds are finally cleaved from the limiting membrane to release cargo-bearing vesicles into the endosomal interior. The molecular machinery that drives multivesicular body biogenesis, the endosomal sorting complex required for transport (ESCRT) machinery, has been identified through genetic screens. It consists of the cytoplasmic, hetero-multimeric complexes ESCRT-0, -I, -II, and -III, and of the Vps4/VtaI complex. Although the ESCRT machinery has been characterized extensively using cell-biological and biochemical approaches, the molecular mechanism of multivesicular body biogenesis remained unclear. In this chapter, I will present in vitro reconstitution systems that we used to study ESCRT-driven membrane remodeling reactions with purified components on artificial membranes. This includes generation of large and giant unilamellar liposomes, as well as in vitro reconstitution reactions of fluorescently labeled proteins on such membranes. I will discuss both, the potential of in vitro systems to analyze membrane-remodeling events and also their limitations.

https://www.ncbi.nlm.nih.gov/pubmed/22325598