Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Institut Pasteur
Cristaux de cellulase, enzyme purifiée de Clostridium thermocellum permettant la digestion de la cellulose. Image colorisée.
Publication : Journal of biochemistry

Recognition of nucleotide analogs containing the 7,8-dihydro-8-oxo structure by the human MTH1 protein

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of biochemistry - 27 Oct 2006

Kamiya H, Cadena-Amaro C, Dugué L, Yakushiji H, Minakawa N, Matsuda A, Pochet S, Nakabeppu Y, Harashima H

Link to Pubmed [PMID] – 17071637

J. Biochem. 2006 Dec;140(6):843-9

The MTH1 protein catalyzes hydrolysis of oxidatively damaged purine nucleotides including 8-hydroxy-dGTP to the monophosphates. The MTH1 protein seems to act as an important defense system against mutagenesis, carcinogenesis, and cell death induced by oxidized purine nucleotides. We previously reported that the functional groups at the 2- and 6-positions of the purine ring affect the recognition by the human MTH1 protein. 8-Hydroxy-dGTP and 8-hydroxy-dATP are substrates of MTH1, and both have the “7,8-dihydro-8-oxo structure.” In this study, three nucleotide analogs containing this motif were examined. A synthetic purine analog containing the 7,8-dihydro-8-oxo structure and the 2-amino function (dJTP) was hydrolyzed to the monophosphate with high efficiency by MTH1. On the other hand, two analogs that lack the two-ring system of their bases [formamidopyrimidine-dGTP (FAPY-dGTP) and 2-OH-dYTP] were poor substrates. FAPY-dGTP is a mixture of conformers and was hydrolyzed more than ten-fold less efficiently than 8-hydroxy-dGTP. These results clarify the effects of the 2-amino group and the two-ring system of the purine base on the recognition by the human MTH1 protein.

http://www.ncbi.nlm.nih.gov/pubmed/17071637