Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Christine Schmitt, Anubis Vega Rua, Jean-Marc Panaud
Tête de moustique femelle Aedes albopictus, vecteur du virus de la dengue et du chikungunya. Microphotographie électronique à balayage, image colorisée.
Publication : Proceedings. Biological sciences / The Royal Society

Rapid evolution of Wolbachia incompatibility types

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Proceedings. Biological sciences / The Royal Society - 05 Sep 2012

Duron O, Bernard J, Atyame CM, Dumas E, Weill M

Link to Pubmed [PMID] – 22951738

Proc. Biol. Sci. 2012 Nov;279(1746):4473-80

In most insects, the endosymbiont Wolbachia induces cytoplasmic incompatibility (CI), an embryonic mortality observed when infected males mate either with uninfected females or with females infected by an incompatible Wolbachia strain. Although the molecular mechanism of CI remains elusive, it is classically viewed as a modification-rescue model, in which a Wolbachia mod function disables the reproductive success of the sperm of infected males, unless eggs are infected and express a compatible resc function. The extent to which the modification-rescue model can predict highly complex CI pattern remains a challenging issue. Here, we show the rapid evolution of the mod-resc system in the Culex pipiens mosquito. We have surveyed four incompatible laboratory isofemale lines over 50 generations and observed in two of them that CI has evolved from complete to partial incompatibility (i.e. the production of a mixture of compatible and incompatible clutches). Emergence of the new CI types depends only on Wolbachia determinants and can be simply explained by the gain of new resc functions. Evolution of CI types in Cx. pipiens thus appears as a gradual process, in which one or several resc functions can coexist in the same individual host in addition to the ones involved in the self-compatibility. Our data identified CI as a very dynamic process. We suggest that ancestral and mutant Wolbachia expressing distinct resc functions can co-infect individual hosts, opening the possibility for the mod functions to evolve subsequently. This gives a first clue towards the understanding of how Wolbachia reached highly complex CI pattern in host populations.