Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Experimental cell research

Prosome cytodistribution relative to desmin and actin filaments in dividing C2.7 myoblasts and during myotube formation in vitro

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Experimental cell research - 25 May 1997

De Conto F, Missorini S, Arcangeletti C, Pinardi F, Montarras D, Pinset C, Vassy J, Géraud G, Chezzi C, Scherrer K

Link to Pubmed [PMID] – 9184080

Exp. Cell Res. 1997 May;233(1):99-117

Prosomes constitute the multicatalytic proteinase (MCP) core of the 26S proteasomes, but were first observed as subcomplexes of untranslated mRNP; this suggests that they play a putative role in the control of protein biosynthesis in addition to their catabolic enzymatic function. In previous investigations it was shown that some prosomes colocalize with the intermediate filaments (IF) of the cytoskeleton, of the cytokeratin type in epithelial cells, and of the vimentin type in fibroblasts. Studies on adult rat muscle carried out with prosome-specific monoclonal antibodies (p-mAbs) have shown, surprisingly, that specific types of prosomes predominantly occupy a particular zone in between the M and the Z lines of the sarcomeric structure. The data presented here show that the subunit composition of prosomes changes when the dividing C2.7 myoblasts fuse into myotubes. We show furthermore that, in dividing C2.7 myoblasts, prosomes colocalize with the desmin network as well as with that of actin, in a distribution that changes with the subunit pattern of the prosomes investigated by individual p-mAbs. Surprisingly, when myogenic fusion is induced, specific types of prosomes move first to the nuclei; later on, they reappear in the cytoplasm. There, superimposing initially onto the reorganizing desmin filaments that run from one pole of the prefusion myoblast to the other, prosomes gradually colocalize with the actin fibers in the fusing myotubes, finally forming a “pearl on a string” pattern. These results are discussed in relation to parallel observations of prosome distribution between the actin and IF networks not only in epithelial cells but also in fusing muscle satellite cells, which made it possible to monitor the complete buildup of the sarcomeric structure.

http://www.ncbi.nlm.nih.gov/pubmed/9184080