Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : International journal of radiation biology

Oxidative stress induces mainly human centrin 2 polymerisation

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in International journal of radiation biology - 01 Aug 2010

Brun E, Blouquit Y, Duchambon P, Malosse C, Chamot-Rooke J, Sicard-Roselli C

Link to Pubmed [PMID] – 20586543

Int. J. Radiat. Biol. 2010 Aug;86(8):657-68

PURPOSE: To determine the human centrin 2 (Hscen 2) protein response to oxidising radicals in vitro and to evaluate the consequences on its biological functions.

MATERIALS AND METHODS: Hscen 2 was submitted to hydroxyl and azide radicals produced by radiolysis in the absence of oxygen. The resulting products were characterised by biochemical, spectroscopic and mass spectrometry techniques. Their thermodynamics parameters of complexation with C-terminal fragment of Xeroderma pigmentosum C protein (C-XPC), one of the Hscen 2 cellular partners, were quantified by isothermal titration calorimetry (ITC).

RESULTS: Both hydroxyl and azide radicals induce centrin 2 polymerisation as we characterised several intermolecular cross-links generating dimers, trimers, tetramers and higher molecular mass species. These cross-links result from the formation of a covalent bond between the only tyrosine residue (Tyr 172) located in the C-terminal region of each monomer. Remarkably, dimerisation occurs for doses as low as a few grays. Moreover, this Hscen2 dimer has a lower affinity and stoechiometry binding to C-XPC.

CONCLUSIONS: These results show that as oxidative radicals induce high proportions of irreversible damages (polymerisation) centrin 2 is highly sensitive to ionising radiation. This could have important consequences on its biological functions.