Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Uwe Maskos
Tranche d'hippocampe de souris colorée avec deux toxines spécifiques de sous-types de récepteur nicotinique, en rouge (grains), et en vert (corps cellulaires). L'hippocampe est la zone du cerveau qui gère la mémoire spatiale.
Publication : Molecular pharmacology

Nicotine-induced structural plasticity in mesencephalic dopaminergic neurons is mediated by dopamine D3 receptors and Akt-mTORC1 signaling.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Molecular pharmacology - 01 Jun 2013

Collo G, Bono F, Cavalleri L, Plebani L, Mitola S, Merlo Pich E, Millan MJ, Zoli M, Maskos U, Spano P, Missale C,

Link to Pubmed [PMID] – 23543412

Link to DOI – 10.1124/mol.113.084863

Mol Pharmacol 2013 Jun; 83(6): 1176-89

Although long-term exposure to nicotine is highly addictive, one beneficial consequence of chronic tobacco use is a reduced risk for Parkinson’s disease. Of interest, these effects both reflect structural and functional plasticity of brain circuits controlling reward and motor behavior and, specifically, recruitment of nicotinic acetylcholine receptors (nAChR) in mesencephalic dopaminergic neurons. Because the underlying cellular mechanisms are poorly understood, we addressed this issue with use of primary cultures of mouse mesencephalic dopaminergic neurons. Exposure to nicotine (1-10 μM) for 72 hours in vitro increased dendritic arborization and soma size in primary cultures. These effects were blocked by mecamylamine and dihydro-β-erythroidine, but not methyllycaconitine. The involvement of α4β2 nAChR was supported by the lack of nicotine-induced structural remodeling in neurons from α4 null mutant mice (KO). Challenge with nicotine triggered phosphorylation of the extracellular signal-regulated kinase (ERK) and the thymoma viral proto-oncogene (Akt), followed by activation of the mammalian target of rapamycin complex 1 (mTORC1)-dependent p70 ribosomal S6 protein kinase. Upstream pathway blockade using the phosphatidylinositol 3-kinase inhibitor LY294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one hydrochloride] resulted in suppression of nicotine-induced phosphorylations and structural plasticity. These effects were dependent on functional DA D3 receptor (D3R), because nicotine was inactive both in cultures from D3R KO mice and after pharmacologic blockade with D3R antagonist trans-N-4-2-(6-cyano-1,2,3, 4-tetrahydroisoquinolin-2-yl)ethylcyclohexyl-4-quinolinecarboxamide (SB-277011-A) (50 nM). Finally, exposure to nicotine in utero (5 mg/kg/day for 5 days) resulted in increased soma area of DAergic neurons of newborn mice, effects not observed in D3 receptor null mutant mice mice. These findings indicate that nicotine-induced structural plasticity at mesencephalic dopaminergic neurons involves α4β2 nAChRs together with dopamine D3R-mediated recruitment of ERK/Akt-mTORC1 signaling.