Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Genome biology and evolution

Natural selection for operons depends on genome size

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Genome biology and evolution - 01 Jan 2013

Nuñez PA, Romero H, Farber MD, Rocha EP

Link to Pubmed [PMID] – 24201372

Genome Biol Evol 2013;5(11):2242-54

In prokaryotes, genome size is associated with metabolic versatility, regulatory complexity, effective population size, and horizontal transfer rates. We therefore analyzed the covariation of genome size and operon conservation to assess the evolutionary models of operon formation and maintenance. In agreement with previous results, intraoperonic pairs of essential and of highly expressed genes are more conserved. Interestingly, intraoperonic pairs of genes are also more conserved when they encode proteins at similar cell concentrations, suggesting a role of cotranscription in diminishing the cost of waste and shortfall in gene expression. Larger genomes have fewer and smaller operons that are also less conserved. Importantly, lower conservation in larger genomes was observed for all classes of operons in terms of gene expression, essentiality, and balanced protein concentration. We reached very similar conclusions in independent analyses of three major bacterial clades (α- and β-Proteobacteria and Firmicutes). Operon conservation is inversely correlated to the abundance of transcription factors in the genome when controlled for genome size. This suggests a negative association between the complexity of genetic networks and operon conservation. These results show that genome size and/or its proxies are key determinants of the intensity of natural selection for operon organization. Our data fit better the evolutionary models based on the advantage of coregulation than those based on genetic linkage or stochastic gene expression. We suggest that larger genomes with highly complex genetic networks and many transcription factors endure weaker selection for operons than smaller genomes with fewer alternative tools for genetic regulation.