Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Pathogens (Basel, Switzerland)

Multiple Antigenic Peptide-Based Vaccines Targeting Ixodes ricinus Neuropeptides Induce a Specific Antibody Response but Do Not Impact Tick Infestation.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Pathogens (Basel, Switzerland) - 28 Oct 2020

Almazán C, Šimo L, Fourniol L, Rakotobe S, Borneres J, Cote M, Peltier S, Mayé J, Versillé N, Richardson J, Bonnet SI

Link to Pubmed [PMID] – 33126686

Link to DOI – 10.3390/pathogens9110900

Pathogens 2020 Oct; 9(11):

Synthetic peptide vaccines were designed to target the neuropeptides innervating Ixodes ricinus salivary glands and hindgut and they were tested for their capacity to afford protective immunity against nymphs or larvae and Anaplasma phagocytophilum-infected nymph infestation, in mice and sheep, respectively. In both models, the assembly of SIFamide (SIFa) or myoinhibitory peptide (MIP) neuropeptides into multiple antigenic peptide constructs (MAPs) elicited a robust IgG antibody response following immunization. Nevertheless, no observable detrimental impact on nymphs was evidenced in mice, and, unfortunately, the number of engorged nymphs on sheep was insufficient for firm conclusions to be drawn, including for bacterial transmission. Regarding larvae, while vaccination of the sheep did not globally diminish tick feeding success or development, analyses of animals at the individual level revealed a negative correlation between anti-SIFa and MIP antibody levels and larva-to-nymph molting success for both antigens. Our results provide a proof of principle and precedent for the use of MAPs for the induction of immunity against tick peptide molecules. Although the present study did not provide the expected level of protection, it inaugurates a new strategy for protection against ticks based on the immunological targeting of key components of their nervous system.