Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Cell death & disease

Multi-omic approach identifies a transcriptional network coupling innate immune response to proliferation in the blood of COVID-19 cancer patients.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Cell death & disease - 29 Oct 2021

Sacconi A, De Vitis C, de Latouliere L, di Martino S, De Nicola F, Goeman F, Mottini C, Paolini F, D'Ascanio M, Ricci A, Tafuri A, Marchetti P, Di Napoli A, De Biase L, Negro A, Napoli C, Anibaldi P, Salvati V, Duffy D, Terrier B, Fanciulli M, Capalbo C, Sciacchitano S, Blandino G, Piaggio G, Mancini R, Ciliberto G,

Link to Pubmed [PMID] – 34716309

Link to DOI – 10.1038/s41419-021-04299-y

Cell Death Dis 2021 10; 12(11): 1019

Clinical outcomes of COVID-19 patients are worsened by the presence of co-morbidities, especially cancer leading to elevated mortality rates. SARS-CoV-2 infection is known to alter immune system homeostasis. Whether cancer patients developing COVID-19 present alterations of immune functions which might contribute to worse outcomes have so far been poorly investigated. We conducted a multi-omic analysis of immunological parameters in peripheral blood mononuclear cells (PBMCs) of COVID-19 patients with and without cancer. Healthy donors and SARS-CoV-2-negative cancer patients were also included as controls. At the infection peak, cytokine multiplex analysis of blood samples, cytometry by time of flight (CyTOF) cell population analyses, and Nanostring gene expression using Pancancer array on PBMCs were performed. We found that eight pro-inflammatory factors (IL-6, IL-8, IL-13, IL-1ra, MIP-1a, IP-10) out of 27 analyzed serum cytokines were modulated in COVID-19 patients irrespective of cancer status. Diverse subpopulations of T lymphocytes such as CD8+T, CD4+T central memory, Mucosal-associated invariant T (MAIT), natural killer (NK), and γδ T cells were reduced, while B plasmablasts were expanded in COVID-19 cancer patients. Our findings illustrate a repertoire of aberrant alterations of gene expression in circulating immune cells of COVID-19 cancer patients. A 19-gene expression signature of PBMCs is able to discriminate COVID-19 patients with and without solid cancers. Gene set enrichment analysis highlights an increased gene expression linked to Interferon α, γ, α/β response and signaling which paired with aberrant cell cycle regulation in cancer patients. Ten out of the 19 genes, validated in a real-world consecutive cohort, were specific of COVID-19 cancer patients independently from different cancer types and stages of the diseases, and useful to stratify patients in a COVID-19 disease severity-manner. We also unveil a transcriptional network involving gene regulators of both inflammation response and proliferation in PBMCs of COVID-19 cancer patients.