Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Marie Prévost, Institut Pasteur
Image of a portion of a Xenopus oocyte expressing a channel receptor.
Publication : European journal of pharmacology

Molecular characterization of the specificity of interactions of various neurotoxins on two distinct nicotinic acetylcholine receptors

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in European journal of pharmacology - 30 Mar 2000

Servent D, Antil-Delbeke S, Gaillard C, Corringer PJ, Changeux JP, Ménez A

Link to Pubmed [PMID] – 10771013

Eur. J. Pharmacol. 2000 Mar;393(1-3):197-204

Snake curaremimetic toxins are currently classified as short-chain and long-chain toxins according to their size and their number of disulfide bonds. All these toxins bind with high affinity to muscular-type nicotinic acetylcholine receptor, whereas only long toxins recognize the alpha7 receptor with high affinity. On the basis of binding experiments with Torpedo or neuronal alpha7 receptors using wild-type and mutated neurotoxins, we characterized the molecular determinants involved in these different recognition processes. The functional sites by which long and short toxins interact with the muscular-type receptor include a common core of highly conserved residues and residues that are specific to each of toxin families. Furthermore, the functional sites through which alpha-cobratoxin, a long-chain toxin, interacts with muscular and alpha7 receptors share similarities but also marked differences. Our results reveal that the three-finger fold toxins have evolved toward various specificities by displaying distinct functional sites.