Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Human molecular genetics

Molecular analyses of juvenile granulosa cell tumors bearing AKT1 mutations provide insights into tumor biology and therapeutic leads

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Human molecular genetics - 11 Sep 2015

Auguste A, Bessière L, Todeschini AL, Caburet S, Sarnacki S, Prat J, D'angelo E, De La Grange P, Ariste O, Lemoine F, Legois B, Sultan C, Zider A, Galmiche L, Kalfa N, Veitia RA

Link to Pubmed [PMID] – 26362254

Hum. Mol. Genet. 2015 Dec;24(23):6687-98

Juvenile granulosa cell tumors (JGCTs) of the ovary are pediatric neoplasms representing 5% of all granulosa cell tumors (GCTs). Most GCTs are of adult type (AGCTs) and bear a mutation in the FOXL2 gene. The molecular basis of JGCTs is poorly understood, although mutations in the GNAS gene have been reported. We have detected in-frame duplications within the oncogene AKT1 in >60% of the JGCTs studied. Here, to evaluate the functional impact of these duplications and the existence of potential co-driver alterations, we have sequenced the transcriptome of four JGCTs and compared them with control transcriptomes. A search for gene variants detected only private alterations probably unrelated with tumorigenesis, suggesting that tandem duplications are the best candidates to underlie tumor formation in the absence of GNAS alterations. We previously showed that the duplications were specific to JGCTs. However, the screening of eight AGCTs samples without FOXL2 mutation showed the existence of an AKT1 duplication in one case, also having a stromal luteoma. The analysis of RNA-Seq data pinpointed a series of differentially expressed genes, involved in cytokine and hormone signaling and cell division-related processes. Further analyses pointed to the existence of a possible dedifferentiation process and suggested that most of the transcriptomic dysregulation might be mediated by a limited set of transcription factors perturbed by AKT1 activation. Finally, we show that commercially available AKT inhibitors can modulate the in vitro activity of various mutated forms. These results shed light on the pathogenesis of JGCTs and provide therapeutic leads for a targeted treatment.

http://www.ncbi.nlm.nih.gov/pubmed/26362254