Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Aurelien Bayot
Confocal micrograph of HeLa cells visulazed by indirect immunocytochemistry for mitochondria in green with an Anti-TOMM40 antibody and nuclei in blue with Dapi.
Publication : Current topics in developmental biology

Mitochondrial DNA and the mammalian oocyte

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Current topics in developmental biology - 01 Jan 2007

Shoubridge EA, Wai T

Link to Pubmed [PMID] – 17222701

Curr. Top. Dev. Biol. 2007;77:87-111

In mammals, mitochondria and mitochondrial DNA (mtDNA) are transmitted through the female germ line. Mature oocytes contain at least 100,000 copies of mtDNA, organized at 1-2 copies per organelle. Despite the high genome copy number, mtDNA sequence variants are observed to segregate rapidly between generations, and this has led to the concept of a developmental bottleneck for the transmission of mtDNA. Ultrastructural investigations of primordial germ cells show that they contain approximately 10 mitochondria, suggesting that mitochondrial biogenesis is arrested during early embryogenesis, and that the mitochondria contributing to the germ cell precursors are simply apportioned from those present in the zygote. Thus, as few as 0.01% of the mitochondria in the oocyte actually contribute to the offspring of the next generation. Mitochondrial replication restarts in the migrating primordial germ cells, and mitochondrial numbers steadily increase to a few thousand in primordial oocytes. Genetic evidence from both heteroplasmic mice and human pedigrees suggests that segregation of mtDNA sequence variants is largely a stochastic process that occurs during the mitotic divisions of the germ cell precursors. This process is essentially complete by the time the primary oocyte population is differentiated in fetal life. Analysis of the distribution of pathogenic mtDNA mutations in the offspring of carrier mothers shows that risk of inheriting a pathogenic mutation increases with the proportion in the mother, but there is no bias toward transmitting more or less of the mutant mtDNAs. This implies that there is no strong selection against oocytes carrying pathogenic mutations and that atresia is not a filter for oocyte quality based on oxidative phosphorylation capacity. The large number of mitochondria and mtDNAs present in the oocyte may simply represent a genetic mechanism to ensure their distribution to the gametes and somatic cells of the next generation. If true, mtDNA copy number, and by inference mitochondrial number, may be the most important determinant of oocyte quality, not because of the effects on oocyte metabolism, but because too few would result in a maldistribution in the early embryo.

https://www.ncbi.nlm.nih.gov/pubmed/17222701