Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Soft matter

Intermittent dynamics of bubble dissolution due to interfacial growth of fat crystals.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Soft matter - 17 Nov 2021

Liascukiene I, Amselem G, Landoulsi J, Gunes DZ, Baroud CN,

Link to Pubmed [PMID] – 34709287

Link to DOI – 10.1039/d1sm00902h

Soft Matter 2021 Nov; 17(44): 10042-10052

Foams are inherently unstable objects, that age and disappear over time. The main cause of foam aging is Ostwald ripening: smaller air bubbles within the foam empty their gas content into larger ones. One strategy to counter Ostwald ripening consists in creating armored bubbles, where solid particles adsorbed at the air/liquid interface prevent bubbles from shrinking below a given size. Here, we study the efficiency of coating air bubbles with fat crystals to prevent bubble dissolution. A monoglyceride, monostearin, is directly crystallized at the air/oil interface. Experiments on single bubbles in a microfluidic device show that the presence of monostearin fat crystals slows down dissolution, with an efficiency that depends on the crystal size. Bubble ripening in the presence of crystals exhibits intermittent dissolution dynamics, with phases of arrest, when crystals jam at the interface, followed by phases of dissolution, when monostearin crystals are ejected from the interface. In the end, crystals do not confer enough mechanical strength to the bubbles to prevent them from fully dissolving.