Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Clinical Research Assistant
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Clinical Research Assistant
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Ahmed Haouz
Cristaux d'une protéine de Mycobacterium tuberculosis produits dans le cadre du Grand Programme Horizontal sur la Tuberculose à l'Institut Pasteur. La caractérisation structurale de protéines mycobactériennes aide à une meilleure compréhension de la physiologie et de la pathogénicité des mycobactéries et fournit un point de départ pour la conception de nouveaux agents antibactériens.
Publication : The Journal of biological chemistry

Insights into Brain Glycogen Metabolism: The Structure of Human Brain Glycogen Phosphorylase

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in The Journal of biological chemistry - 08 Jul 2016

Mathieu C, Li de la Sierra-Gallay I, Duval R, Xu X, Cocaign A, Léger T, Woffendin G, Camadro JM, Etchebest C, Haouz A, Dupret JM, Rodrigues-Lima F

Link to Pubmed [PMID] – 27402852

J. Biol. Chem. 2016 Jul;

Brain glycogen metabolism plays a critical role in major brain functions such as learning or memory consolidation. However, alteration of glycogen metabolism and glycogen accumulation in the brain contributes to neurodegeneration as observed in Lafora disease. Glycogen phosphorylase (GP), a key enzyme in glycogen metabolism, catalyzes the rate-limiting step of glycogen mobilization. Moreover, the allosteric regulation of the three GP isozymes (muscle, liver and brain) by metabolites and phosphorylation, in response to hormonal signaling, fine-tunes glycogenolysis to fulfill energetic and metabolic requirements. Whereas the structures of muscle and liver GPs have been known for decades, the structure of bGP has remained elusive despite its critical role in brain glycogen metabolism. Here, we report the crystal structure of human brain GP in complex with PEG 400 (2.5 A) and in complex with its allosteric activator AMP (3.4 A). These structures demonstrate that bGP has a closer structural relationship with muscle GP (mGP) which is also activated by AMP, contrary to liver GP (lGP), which is not. Importantly, despite the structural similarities between human bGP and the two other mammalian isozymes, the bGP structures reveal molecular features unique to the brain isozyme which provide a deeper understanding of the differences in the activation properties of these allosteric enzymes by the allosteric effector AMP. Overall, our study further supports that the distinct structural and regulatory properties of GP isozymes contribute to the different functions of muscle, liver and brain glycogen.

http://www.ncbi.nlm.nih.gov/pubmed/27402852