Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Tissue engineering. Part C, Methods

In vitro and in vivo bioluminescent quantification of viable stem cells in engineered constructs

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Tissue engineering. Part C, Methods - 01 Jun 2010

Logeart-Avramoglou D, Oudina K, Bourguignon M, Delpierre L, Nicola MA, Bensidhoum M, Arnaud E, Petite H

Link to Pubmed [PMID] – 19624260

Tissue Eng Part C Methods 2010 Jun;16(3):447-58

Bioluminescent quantification of viable cells inside three-dimensional porous scaffolds was performed in vitro and in vivo. The assay quantified the bioluminescence of murine stem (C3H10T1/2) cells tagged with the luciferase gene reporter and distributed inside scaffolds of either soft, translucent, AN69 polymeric hydrogel or hard, opaque, coral ceramic materials. Quantitative evaluation of bioluminescence emitted from tagged cells adhering to these scaffolds was performed in situ using either cell lysates and a luminometer or intact cells and a bioluminescence imaging system. Despite attenuation of the signal when compared to cells alone, the bioluminescence correlated with the number of cells (up to 1.5 x 10(5)) present on each material scaffold tested, both in vitro and noninvasively in vivo (subcutaneous implants in the mouse model). The noninvasive bioluminescence measurement technique proved to be comparable to the cell-destructive bioluminescence measurement technique. Monitoring the kinetics of luciferase expression via bioluminescence enabled real-time assessment of cell survival and proliferation on the scaffolds tested over prolonged (up to 59 days) periods of time. This novel, sensitive, easy, fast-to-implement, quantitative bioluminescence assay has great, though untapped, potential for screening and determining noninvasively the presence of viable cells on biomaterial constructs in the tissue engineering and tissue regeneration fields.

https://www.ncbi.nlm.nih.gov/pubmed/19624260