Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Infection and immunity

Identification of a compensatory mutant (lpg2-REV) of Leishmania major able to survive as amastigotes within macrophages without LPG2-dependent glycoconjugates and its significance to virulence and immunization strategies

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Infection and immunity - 01 Jun 2004

Späth GF, Lye LF, Segawa H, Turco SJ, Beverley SM

Link to Pubmed [PMID] – 15155672

Infect. Immun. 2004 Jun;72(6):3622-7

Different Leishmania species rely to different extents on abundant glycoconjugates, such as lipophosphoglycan (LPG) and related molecules, in mammalian infections. Previously, we showed that Leishmania major deletion mutants lacking the Golgi GDP-mannose transporter LPG2, which is required for assembly of the dominant phosphoglycan (PG) repeats of LPG, were unable to survive in macrophages. These lpg2- mutants, however, retained the ability to generate asymptomatic, persistent infections in mice. In contrast, Ilg and colleagues showed that Leishmania mexicana LPG2 mutants retained virulence for mice. Here we identified a partial revertant population of the L. major lpg2- mutants (designated lpg2(-)REV) that had regained the ability to replicate in macrophages and induce disease pathology through a compensatory change. Like the lpg2 parent, the lpg2(-)REV revertant was unable to synthesize LPG2-dependent PGs in the promastigote stage and thus remained highly attenuated in the ability to induce infection. However, after considerable delay lpg2(-)REV revertant-infected mice exhibited lesions, and amastigotes isolated from these lesions were able to replicate within macrophages despite the fact that they were unable to synthesize PGs. Thus, in some respects, the lpg2(-)REV amastigotes resemble L. mexicana amastigotes. Future studies of the gene(s) responsible may shed light on the mechanisms employed by L. major to survive in the absence of LPG2-dependent glycoconjugates and may also improve the potential of the lpg2- L. major line to serve as a live parasite vaccine by overcoming its tendency to revert toward virulence.

http://www.ncbi.nlm.nih.gov/pubmed/15155672