Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Infection and immunity

Human monocytes kill Shigella flexneri but then die by apoptosis associated with suppression of proinflammatory cytokine production

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Infection and immunity - 01 Jul 2002

Hathaway LJ, Griffin GE, Sansonetti PJ, Edgeworth JD

Link to Pubmed [PMID] – 12065527

Infect. Immun. 2002 Jul;70(7):3833-42

Shigella flexneri infection of human macrophages is followed by rapid bacterial escape into the cytosol and secretion of IpaB, which activates caspase-1 to mediate cell death and release of mature interleukin (IL)-1 beta. Here we report a different outcome following infection of human peripheral blood monocytes. S. flexneri infects monocytes inefficiently in the absence of complement and, following complement-dependent uptake, cannot escape the endosomal compartment. Consequently, bacteria are killed within the first 60 min in the absence of monocyte cell death, as demonstrated by immunofluorescence and electron microscopy and enumeration of colonies in a gentamicin protection assay. Despite early bacterial death, wild-type S. flexneri influenced the subsequent monocyte proinflammatory cytokine response and cell fate. Infection with wild-type S. flexneri resulted in IpaB-dependent suppression of IL-1 beta, tumor necrosis factor alpha, and IL-6 compared with that of plasmid-cured avirulent S. flexneri-infected cells. Furthermore, over the following 6 to 8 h, virulent S. flexneri-infected monocytes died by apoptosis whereas avirulent infected monocytes died by necrosis. Together, these results imply that monocytes migrating into the inflammatory site during the early stages of shigellosis kill S. flexneri but that during bacterial uptake, they receive virulence signals from S. flexneri which induce delayed apoptosis associated with suppression of the proinflammatory cytokine response to bacterial phagocytosis. This delayed apoptosis may have important effects on the ordered initiation of the innate immune response, leading to the excessive inflammatory response characteristic of shigellosis.

http://www.ncbi.nlm.nih.gov/pubmed/12065527