Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Journal of molecular biology

How NF-kappaB can be attracted by its cognate DNA

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of molecular biology - 15 Oct 1999

Tisné C, Delepierre M, Hartmann B

Link to Pubmed [PMID] – 10512722

J. Mol. Biol. 1999 Oct;293(1):139-50

NF-kappaB is involved in the transcriptional regulation of a large number of genes, in particular those of human immunodeficiency virus (HIV). Recently, we used NMR spectroscopy and molecular modelling to study the solution structure of a native duplex related to the HIV-1 kappaB site, together with a mutated duplex for which a three base-pair change abolishes NF-kappaB binding. The native duplex shows unusual dynamics of the four steps surrounding the kappaB site. Here, we explore the intrinsic properties of the NMR-refined structures of both duplexes in order to understand why the native sequence is recognised by NF-kappaB among other DNA sequences. We establish that only the native kappaB site can adopt a conformation where its structure (curvature and base displacement), the accessibility and the electrostatic potentials of key atoms become very favourable for binding the large loops of NF-kappaB, in contrast to the mutated duplex. Finally, we show that the neutralisation of phosphate groups contacted by NF-kappaB favours a more canonical DNA structure. These findings lead to a new hypothesis for specific recognition through the phosphodiester backbone dynamics of the sequences flanking a binding site. Such unusual behaviour confers upon the overall duplex properties that can be used by NF-kappaB to select its binding site. Thus, the selectivity determinants for NF-kappaB binding appear to depend on deformability of an “extended” consensus sequence.