Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Molecular microbiology

Homozygosity at the MTL locus in clinical strains of Candida albicans: karyotypic rearrangements and tetraploid formation

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Molecular microbiology - 01 Jun 2004

Legrand M, Lephart P, Forche A, Mueller FM, Walsh T, Magee PT, Magee BB

Link to Pubmed [PMID] – 15165246

Mol. Microbiol. 2004 Jun;52(5):1451-62

One hundred and twenty Candida albicans clinical isolates from the late 1980s and early 1990s were examined for homozygosity at the MTL locus. Of these, 108 were heterozygous (MTLa/MTLalpha), whereas seven were MTLa and five were MTLalpha. Five of the homozygous isolates were able to switch to the opaque cell morphology, while opaque cells were not detectable among the remaining seven. Nevertheless, all but one of the isolates homozygous at the MTL locus were shown to mate and to yield cells containing markers from both parents; the non-mater was found to have a frameshift in the MTLalpha1 gene. In contrast to Saccharomyces cerevisiae, C. albicans homozygotes with no active MTL allele failed to mate rather than mating as a cells. There was no correlation between homozygosity and fluconazole resistance, mating and fluconazole resistance or switching and fluconazole resistance, in part because most of the strains were isolated before the widespread use of this antifungal agent, and only three were in fact drug resistant. Ten of the 12 homozygotes had rearranged karyotypes involving one or more homologue of chromosomes 4, 5, 6 and 7. We suggest that karyotypic rearrangement, drug resistance and homozygosity come about as the result of induction of hyper-recombination during the infection process; hence, they tend to occur together, but each is the independent result of the same event. Furthermore, as clinical strains can mate and form tetraploids, mating and marker exchange are likely to be a significant part of the life cycle of C. albicans in vivo.

http://www.ncbi.nlm.nih.gov/pubmed/15165246