Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Clifton E. Barry III, Ph.D., NIAID, NIH.
Colorized scanning electron micrograph of Mycobacterium tuberculosis
Publication : The Journal of biological chemistry

Functional analysis of early secreted antigenic target-6, the dominant T-cell antigen of Mycobacterium tuberculosis, reveals key residues involved in secretion, complex formation, virulence, and immunogenicity

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in The Journal of biological chemistry - 27 Jul 2005

Brodin P, de Jonge MI, Majlessi L, Leclerc C, Nilges M, Cole ST, Brosch R

Link to Pubmed [PMID] – 16048998

J. Biol. Chem. 2005 Oct;280(40):33953-9

Proteins of the 6-kDa early secreted antigenic target (ESAT-6) secretion system-1 of Mycobacterium tuberculosis are not only strongly involved in the anti-mycobacterial Th1-host immune response but are also key players for virulence. In this study, protein engineering together with bioinformatic, immunological, and virulence analyses allowed us to pinpoint regions of the ESAT-6 molecule that are critical for its biological activity in M. tuberculosis. Mutation of the Trp-Xaa-Gly motif, conserved in a wide variety of ESAT-6-like proteins, abolished complex formation with the partner protein CFP-10, induction of specific T-cell responses, and virulence. Replacement of conserved Leu residues interfered with secretion, coiled-coil formation, and virulence, whereas certain mutations at the extreme C terminus did not affect secretion but caused attenuation, possibly because of altered ESAT-6 targeting or trafficking. In contrast, the mutation of several residues on the outer surface of the four-helical bundle structure of the ESAT-6.CFP-10 complex showed much less effect. Construction of recombinant BCG expressing ESAT-6 with a C-terminal hexahistidine tag allowed us to co-purify ESAT-6 and CFP-10, experimentally confirming their strong interaction both in and outside of the mycobacterial cell. The strain induced potent, antigen-specific T-cell responses and intermediate in vivo growth in mice, suggesting that it remained immunogenic and biologically active despite the tag. Together with previous NMR data, the results of this study have allowed a biologically relevant model of the ESAT-6.CFP-10 complex to be constructed that is critical for understanding the structure-function relationship in tuberculosis pathogenesis.