Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : The New biologist

From gene to chromosome: organization levels defined by the interplay of transcription and replication in vertebrates

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in The New biologist - 01 Nov 1990

Herbomel P

Link to Pubmed [PMID] – 2101632

New Biol. 1990 Nov;2(11):937-45

In higher eukaryotes, gene activation is accompanied by an increased sensitivity to DNaseI over a domain that extends beyond the limits of the gene itself, or of the gene cluster to which it belongs. This increased sensitivity probably reflects both the partial decondensation of chromatin and an increased communication with the outside of the nucleus. In addition, gene activation usually causes a coreplication domain that extends much beyond the decondensation domain to switch to an early replication time in S phase. This switch is produced, at least in some cases, by an early firing of origins of replication situated in flanking condensed chromatin. Some of the recently identified DNA domains that tether chromosomal loops to the nuclear matrix do represent the borders of decondensation domains. They may also constitute pausing sites for replication forks. The different replication times of successive 200- to 400-kb regions along the genome may have been the basis for the observed long-term differentiation of very large genomes in domains of different overall sequence composition (G:C content and distribution of short repeated motifs). Chromosomal bands represent a low resolution picture of this pattern. Just like gene methylation, differential replication timing and the consequent compositional differentiation of the genome have probably contributed to making the management of very large genomes workable.