Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Molecular biology and evolution

Evolution of the TIR domain-containing adaptors in humans: swinging between constraint and adaptation

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Molecular biology and evolution - 09 Jun 2011

Fornarino S, Laval G, Barreiro LB, Manry J, Vasseur E, Quintana-Murci L

Link to Pubmed [PMID] – 21659570

Mol. Biol. Evol. 2011 Nov;28(11):3087-97

Natural selection is expected to act strongly on immune system genes as hosts adapt to novel, diverse, and coevolving pathogens. Population genetic studies of host defense genes with parallel functions in model organisms have revealed distinct evolutionary histories among the different components-receptors, adaptors, and effectors-of the innate immune system. In humans, however, detailed evolutionary studies have been mainly confined to the receptors and in particular to Toll-like receptors (TLRs). By virtue of a toll/interleukin-1 receptor (TIR) domain, TLRs activate distinct signaling pathways, which are mediated by the five TIR-containing adaptors: myeloid differentiation factor-88 (MyD88), myeloid differentiation factor-88 adaptor-like protein (MAL), toll/interleukin-1 receptor domain-containing adaptor protein inducing interferon (IFN)β (TRIF), toll/interleukin-1 receptor domain-containing adaptor protein inducing IFNβ-related adaptor molecule (TRAM), and sterile α- and armadillo motif-containing protein (SARM). Here, we have examined the extent to which natural selection has affected immune adaptors in humans, using as a paradigm the TIR-containing adaptors. To do so, we characterized their levels of naturally occurring genetic variation in various human populations. We found that MyD88 and TRIF have mainly evolved under purifying selection, suggesting that their role in the early stages of signal transduction is essential and nonredundant for host survival. In addition, the adaptors have been targeted by multiple episodes of positive selection, differing in timing and spatial location. MyD88 and SARM display signatures of a selective sweep that has occurred in all humans, whereas for the other three adaptors, we detected signatures of adaptive evolution that are restricted to specific populations. Our study provides evidence that the contemporary diversity of the five TIR-containing adaptors results from the intermingling of different selective events, swinging between constraint and adaptation.