Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Epidemics

Dynamics of livestock-associated methicillin resistant Staphylococcus aureus in pig movement networks: Insight from mathematical modeling and French data

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Epidemics - 09 Feb 2020

Bastard J, Andraud M, Chauvin C, Glaser P, Opatowski L, Temime L

Link to Pubmed [PMID] – 32146319

Epidemics 2020 Feb;31:100389

Livestock-associated methicillin resistant Staphylococcus aureus (LA-MRSA) colonizes livestock animals worldwide, especially pigs and calves. Although frequently carried asymptomatically, LA-MRSA can cause severe infections in humans. It is therefore important to better understand LA-MRSA spreading dynamics within pig farms and over pig movement networks, and to compare different strategies of control and surveillance. For this purpose, we propose a stochastic meta-population model of LA-MRSA spread along the French pig movement network (n = 10,542 farms), combining within- and between-farm dynamics, based on detailed data on breeding practices and pig movements between holdings. We calibrate the model using French epidemiological data. We then identify farm-level factors associated with the spreading potential of LA-MRSA in the network. We also show that, assuming control measures applied in a limited (n = 100) number of farms, targeting farms depending on their centrality in the network is the only way to significantly reduce LA-MRSA global prevalence. Finally, we investigate the scenario of emergence of a new LA-MRSA strain, and find that the farms with the highest indegree would be the best sentinels for a targeted surveillance of such a strain’s introduction.