Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Journal of mathematical biology

Distribution and asymptotic behavior of the phylogenetic transfer distance.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of mathematical biology - 29 Apr 2019

Dávila Felipe M, Domelevo Entfellner JB, Lemoine F, Truszkowski J, Gascuel O,

Link to Pubmed [PMID] – 31037350

Link to DOI – 10.1007/s00285-019-01365-0

J Math Biol 2019 07; 79(2): 485-508

The transfer distance (TD) was introduced in the classification framework and studied in the context of phylogenetic tree matching. Recently, Lemoine et al. (Nature 556(7702):452-456, 2018. https://doi.org/10.1038/s41586-018-0043-0 ) showed that TD can be a powerful tool to assess the branch support on large phylogenies, thus providing a relevant alternative to Felsenstein’s bootstrap. This distance allows a reference branch[Formula: see text] in a reference tree [Formula: see text] to be compared to a branch b from another tree T (typically a bootstrap tree), both on the same set of n taxa. The TD between these branches is the number of taxa that must be transferred from one side of b to the other in order to obtain [Formula: see text]. By taking the minimum TD from [Formula: see text] to all branches in T we define the transfer index, denoted by [Formula: see text], measuring the degree of agreement of T with [Formula: see text]. Let us consider a reference branch [Formula: see text] having p tips on its light side and define the transfer support (TS) as [Formula: see text]. Lemoine et al. (2018) used computer simulations to show that the TS defined in this manner is close to 0 for random “bootstrap” trees. In this paper, we demonstrate that result mathematically: when T is randomly drawn, TS converges in probability to 0 when n tends to [Formula: see text]. Moreover, we fully characterize the distribution of [Formula: see text] on caterpillar trees, indicating that the convergence is fast, and that even when n is small, moderate levels of branch support cannot appear by chance.