Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Journal of molecular biology

Distance from the chromosome end determines the efficiency of double strand break repair in subtelomeres of haploid yeast.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of molecular biology - 09 May 2003

Ricchetti M, Dujon B, Fairhead C,

Link to Pubmed [PMID] – 12729759

J Mol Biol 2003 May; 328(4): 847-62

Double strand break (DSB) repair plays an important role in chromosome evolution. We have investigated the fate of DSBs as a function of their location along the yeast chromosome XI, in a system where no conventional homologous recombination can occur. We report that the relative frequency of non-homologous endjoining (NHEJ), which is the exclusive mode of DSB repair in the internal chromosomal portion, decreases gradually towards the telomere, keeping the absolute frequency nearly constant, and that other repair mechanisms, which generally involve the loss of the distal chromosomal fragment, appear in subtelomeric regions. Distance of the DSB from chromosome ends plays a critical role in the global frequency of these repair mechanisms. Direct telomere additions are rare, and other events such as break-induced replication, plasmid incorporation, and gene conversion, involve acquisition of heterologous sequences. Therefore, in subtelomeric regions, cell survival to DSBs is higher and alternative modes of repair allow new genomic combinations to be generated. Furthermore, subtelomeric rearrangements depend on the recombination process, which, unexpectedly, also promotes the joining of heterologous sequences. Finally, we report that the Rad52 protein increases the efficiency of NHEJ.