Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Clinical Research Assistant
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Clinical Research Assistant
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Science (New York, N.Y.)

Dengue diversity across spatial and temporal scales: Local structure and the effect of host population size

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Science (New York, N.Y.) - 24 Mar 2017

Salje H, Lessler J, Maljkovic Berry I, Melendrez MC, Endy T, Kalayanarooj S, A-Nuegoonpipat A, Chanama S, Sangkijporn S, Klungthong C, Thaisomboonsuk B, Nisalak A, Gibbons RV, Iamsirithaworn S, Macareo LR, Yoon IK, Sangarsang A, Jarman RG, Cummings DA

Link to Pubmed [PMID] – 28336667

Science 2017 Mar;355(6331):1302-1306

A fundamental mystery for dengue and other infectious pathogens is how observed patterns of cases relate to actual chains of individual transmission events. These pathways are intimately tied to the mechanisms by which strains interact and compete across spatial scales. Phylogeographic methods have been used to characterize pathogen dispersal at global and regional scales but have yielded few insights into the local spatiotemporal structure of endemic transmission. Using geolocated genotype (800 cases) and serotype (17,291 cases) data, we show that in Bangkok, Thailand, 60% of dengue cases living <200 meters apart come from the same transmission chain, as opposed to 3% of cases separated by 1 to 5 kilometers. At distances <200 meters from a case (encompassing an average of 1300 people in Bangkok), the effective number of chains is 1.7. This number rises by a factor of 7 for each 10-fold increase in the population of the "enclosed" region. This trend is observed regardless of whether population density or area increases, though increases in density over 7000 people per square kilometer do not lead to additional chains. Within Thailand these chains quickly mix, and by the next dengue season viral lineages are no longer highly spatially structured within the country. In contrast, viral flow to neighboring countries is limited. These findings are consistent with local, density-dependent transmission and implicate densely populated communities as key sources of viral diversity, with home location the focal point of transmission. These findings have important implications for targeted vector control and active surveillance.

https://www.ncbi.nlm.nih.gov/pubmed/28336667