Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • MD-PhD Student
  • Medical Staff
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • MD-PhD Student
  • Medical Staff
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Nature communications

Deleterious variants in the autophagy-related gene RB1CC1/FIP200 impair immunity to SARS-CoV-2.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Nature communications - 27 Nov 2025

Hu L, van der Sluis RM, Castelino KB, Zhang BC, Ronit A, Zillinger T, Werner M, Jørgensen SE, Hansen AL, Pedersen A, Narita R, Reinert LS, Bundgaard B, , Holm CK, Cobat A, Casanova JL, Reggiori F, Mari M, Paludan SR, Mogensen TH

Link to Pubmed [PMID] – 41309545

Link to DOI – 10.1038/s41467-025-65308-8

Nat Commun 2025 Nov; 16(1): 10618

The clinical outcome of SARS-CoV-2 infection spans from asymptomatic viral elimination to lethal COVID-19 pneumonia, which is due to type I interferon (IFN) deficiency in at least 15-20% of cases. We report two unrelated male patients with critical COVID-19 who are heterozygous for rare deleterious variants in RB1CC1, encoding the autophagy-related FIP200 protein. Airway epithelial cells genetically deprived of FIP200 or cell lines expressing the RB1CC1/FIP200 patient variants exhibit elevated SARS-CoV-2 replication and impaired autophagic flux. The antiviral function of FIP200 is independent of canonical autophagy and type I IFN, but involves the selective autophagy receptor NDP52. We identify a non-canonical function of FIP200 in a novel lysosomal degradation pathway, in which SARS-CoV-2 virions are targeted to single-membrane compartments for degradation of viral RNA in LC3B-positive acidified vesicles. This pathway is impaired in FIP200-deficient cells and in cells expressing FIP200 patient haplotypes. Collectively, we describe a cell-autonomous anti-SARS-CoV-2 restriction pathway, dependent on FIP200 and NDP52, and independent of canonical autophagy and type I IFN, which can underlie critical COVID-19 pneumonia.