Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Plant physiology

De novo formation of plant endoplasmic reticulum export sites is membrane cargo induced and signal mediated

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Plant physiology - 23 Feb 2007

Hanton SL, Chatre L, Renna L, Matheson LA, Brandizzi F

Link to Pubmed [PMID] – 17322335

Plant Physiol. 2007 Apr;143(4):1640-50

The plant endoplasmic reticulum (ER) contains functionally distinct subdomains at which cargo molecules are packed into transport carriers. To study these ER export sites (ERES), we used tobacco (Nicotiana tabacum) leaf epidermis as a model system and tested whether increased cargo dosage leads to their de novo formation. We have followed the subcellular distribution of the known ERES marker based on a yellow fluorescent protein (YFP) fusion of the Sec24 COPII coat component (YFP-Sec24), which, differently from the previously described ERES marker, tobacco Sar1-YFP, is visibly recruited at ERES in both the presence and absence of overexpressed membrane cargo. This allowed us to quantify variation in the ERES number and in the recruitment of Sec24 to ERES upon expression of cargo. We show that increased synthesis of membrane cargo leads to an increase in the number of ERES and induces the recruitment of Sec24 to these ER subdomains. Soluble proteins that are passively secreted were found to leave the ER with no apparent up-regulation of either the ERES number or the COPII marker, showing that bulk flow transport has spare capacity in vivo. However, de novo ERES formation, as well as increased recruitment of Sec24 to ERES, was found to be dependent on the presence of the diacidic ER export motif in the cytosolic domain of the membrane cargo. Our data suggest that the plant ER can adapt to a sudden increase in membrane cargo-stimulated secretory activity by signal-mediated recruitment of COPII machinery onto existing ERES, accompanied by de novo generation of new ERES.