Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Journal of bacteriology

Core and panmetabolism in Escherichia coli

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of bacteriology - 14 Jan 2011

Vieira G, Sabarly V, Bourguignon PY, Durot M, Le Fèvre F, Mornico D, Vallenet D, Bouvet O, Denamur E, Schachter V, Médigue C

Link to Pubmed [PMID] – 21239590

J. Bacteriol. 2011 Mar;193(6):1461-72

Escherichia coli exhibits a wide range of lifestyles encompassing commensalism and various pathogenic behaviors which its highly dynamic genome contributes to develop. How environmental and host factors shape the genetic structure of E. coli strains remains, however, largely unknown. Following a previous study of E. coli genomic diversity, we investigated its diversity at the metabolic level by building and analyzing the genome-scale metabolic networks of 29 E. coli strains (8 commensal and 21 pathogenic strains, including 6 Shigella strains). Using a tailor-made reconstruction strategy, we significantly improved the completeness and accuracy of the metabolic networks over default automatic reconstruction processes. Among the 1,545 reactions forming E. coli panmetabolism, 885 reactions were common to all strains. This high proportion of core reactions (57%) was found to be in sharp contrast to the low proportion (13%) of core genes in the E. coli pangenome, suggesting less diversity of metabolic functions compared to that of all gene functions. Core reactions were significantly overrepresented among biosynthetic reactions compared to the more variable degradation processes. Differences between metabolic networks were found to follow E. coli phylogeny rather than pathogenic phenotypes, except for Shigella networks, which were significantly more distant from the others. This suggests that most metabolic changes in non-Shigella strains were not driven by their pathogenic phenotypes. Using a supervised method, we were yet able to identify small sets of reactions related to pathogenicity or commensalism. The quality of our reconstructed networks also makes them reliable bases for building metabolic models.