Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Cancer letters

COPZ1 depletion in thyroid tumor cells triggers type I IFN response and immunogenic cell death.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Cancer letters - 28 Apr 2020

Di Marco T, Bianchi F, Sfondrini L, Todoerti K, Bongarzone I, Maffioli EM, Tedeschi G, Mazzoni M, Pagliardini S, Pellegrini S, Neri A, Anania MC, Greco A,

Link to Pubmed [PMID] – 32061953

Link to DOI – S0304-3835(20)30073-210.1016/j.canlet.2020.02.011

Cancer Lett 2020 04; 476(): 106-119

The coatomer protein complex zeta 1 (COPZ1) represents a non-oncogene addiction for thyroid cancer (TC); its depletion impairs the viability of thyroid tumor cells, leads to abortive autophagy, ER stress, UPR and apoptosis, and reduces tumor growth of TC xenograft models. In this study we investigated the molecular pathways activated by COPZ1 depletion and the paracrine effects on cellular microenvironment and immune response. By comprehensive and target approaches we demonstrated that COPZ1 depletion in TPC-1 and 8505C thyroid tumor cell lines activates type I IFN pathway and viral mimicry responses. The secretome from COPZ1-depleted cells was enriched for several inflammatory molecules and damage-associated molecular patterns (DAMPs). Moreover, we found that dendritic cells, exposed to these secretomes, expressed high levels of differentiation and maturation markers, and stimulated the proliferation of naïve T cells. Interestingly, T cells stimulated with COPZ1-depleted cells showed increased cytotoxic activity against parental tumor cells. Collectively, our findings support the notion that targeting COPZ1 may represent a promising therapeutic approach for TC, considering its specificity for cancer cells, the lack of effect on normal cells, and the capacity to prompt an anti-tumor immune response.