Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Biochemistry

Conformational and functional properties of an undecapeptide epitope fused with the C-terminal end of the maltose binding protein

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Biochemistry - 22 Jul 1997

Rondard P, Brégégère F, Lecroisey A, Delepierre M, Bedouelle H

Link to Pubmed [PMID] – 9220983

Biochemistry 1997 Jul;36(29):8954-61

Monoclonal antibody mAb164 is directed against the TrpB2 subunit of the Escherichia coli tryptophan synthase. It recognizes the synthetic peptide P11, constituted of residues 273-283 of TrpB, with high affinity. We constructed a hybrid protein in which the C-terminal end of protein MalE was linked with the N-terminal end of P11. Hybrid MalE-P11 was produced in E. coli from a plasmidic gene and purified in one step as MalE. MalE-P11 and the isolated P11 had identical conformational and functional properties according to the following criteria. The NMR spectra of MalE and MalE-P11 in TOCSY experiments showed that the P11 moiety of MalE-P11 moved independently from its MalE moiety. The chemical shifts of the protons for the P11 moiety of MalE-P11 and for the isolated P11 were very close and did not show significant deviations from random coil values. The equilibrium constant of dissociation (KD) from mAb164, measured by a competition ELISA, was identical for MalE-P11 and the isolated P11, around 6 nM. The change of the C-terminal residue of MalE-P11 from Lys into Ala increased 37-fold this dissociation constant. This increase showed that the P11 moiety of MalE-P11 was not degraded. The high molecular mass of MalE-P11 allowed us to follow its kinetics of interaction with immobilized mAb164 by surface plasmon resonance, using the BIAcore apparatus. The rates of association with mAb164 were similar for MalE-P11 and TrpB2, but the dissociation was faster for MalE-P11 than for TrpB2, as previously observed for the isolated P11 by a fluorometric method. Thus, the fusion of peptides with the C-terminal end of MalE could constitute an alternative to chemical synthesis for the study of their recognition by receptors, in vivo or in vitro.

http://www.ncbi.nlm.nih.gov/pubmed/9220983