Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Valérie Choumet
Mosquitoes were orally infected with the chikungunya virus. Midguts were dissected at day 5 post-infection, fixed and permeabilised. Virus is shown in red (anti-E2 protein, cyanine 3), the actin network in green (phalloidin 548) and nuclei in blue (DAPI).
Publication : Glycobiology

Conformation of the O-specific polysaccharide of Shigella dysenteriae type 1: molecular modeling shows a helical structure with efficient exposure of the antigenic determinant alpha-L-Rhap-(1–>2)-alpha-D-Galp

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Glycobiology - 01 Nov 2001

Nyholm PG, Mulard LA, Miller CE, Lew T, Olin R, Glaudemans CP

Link to Pubmed [PMID] – 11744629

Glycobiology 2001 Nov;11(11):945-55

The O-specific polysaccharide of Shigella dysenteriae type 1, which has the repeating tetrasaccharide unit –>3)-alpha-L-Rhap-(1–>3)-alpha-L-Rhap-(1–>2)-alpha-D-Galp-(1–>3)-alpha-D-GlcNAcp-(1–> (A-B-C-D), is a major virulence factor, and it is believed that antibodies against this polysaccharide confer protection to the host. The conformational properties of fragments of this O-antigen were explored using systematic search with a modified HSEA method (GLYCAN) and with molecular mechanics MM3(96). The results show that the alpha-D-Gal-(1–>3)-alpha-D-GlcNAc linkage adopts two favored conformations, phi/psi approximately equal to -40 degrees /-30 degrees (I) and approximately 15 degrees /30 degrees (II), whereas the other glycosidic linkages only have a single favored phi/psi conformational range. MM3 indicates that the trisaccharide B-C-D and tetrasaccharides containing the B-C-D moiety exist as two different conformers, distinguished by the conformations I and II of the C-D linkage. For the pentasaccharide A-B-C-D-A’ and longer fragments, the calculations show preference for the C-D conformation II. These results can explain previously reported nuclear magnetic resonance data. The pentasaccharide in its favored conformation II is sharply bent, with the galactose residue exposed at the vertex. This hairpin conformation of the pentasaccharide was successfully docked with the binding site of a monoclonal IgM antibody (E3707 E9) that had been homology modeled from known crystal structures. For fragments made of repetitive tetrasaccharide units, the hairpin conformation leads to a left-handed helical structure with the galactose residues protruding radially at the helix surface. This arrangement results in a pronounced exposure of the galactose and also the adjacent rhamnose in each repeating unit, which is consistent with the known role of the as alpha-L-Rhap-(1–>2)-alpha-D-Galp moiety as a major antigenic epitope of this O-specific polysaccharide.