Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Antoinette Ryter
Serratia marcescens avec présence de flagelles (cils) péritriches. Famille des Enterobacteriaceae, bacille à Gram négatif, non sporulé, anaérobie facultatif, mobile, parfois encapsulé, pouvant synthétiser un pigment rouge ou rose. Présent dans les végétaux , le sol, et l'eau. A l'origine d'infections nosocomiales et résistant à de nombreux antibiotiques. Image colorisée.
Publication : PLoS computational biology

Computational design of novel Cas9 PAM-interacting domains using evolution-based modelling and structural quality assessment.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in PLoS computational biology - 01 Nov 2023

Malbranke C, Rostain W, Depardieu F, Cocco S, Monasson R, Bikard D

Link to Pubmed [PMID] – 37976326

Link to DOI – 10.1371/journal.pcbi.1011621

PLoS Comput Biol 2023 Nov; 19(11): e1011621

We present here an approach to protein design that combines (i) scarce functional information such as experimental data (ii) evolutionary information learned from a natural sequence variants and (iii) physics-grounded modeling. Using a Restricted Boltzmann Machine (RBM), we learn a sequence model of a protein family. We use semi-supervision to leverage available functional information during the RBM training. We then propose a strategy to explore the protein representation space that can be informed by external models such as an empirical force-field method (FoldX). Our approach is applied to a domain of the Cas9 protein responsible for recognition of a short DNA motif. We experimentally assess the functionality of 71 variants generated to explore a range of RBM and FoldX energies. Sequences with as many as 50 differences (20% of the protein domain) to the wild-type retained functionality. Overall, 21/71 sequences designed with our method were functional. Interestingly, 6/71 sequences showed an improved activity in comparison with the original wild-type protein sequence. These results demonstrate the interest in further exploring the synergies between machine-learning of protein sequence representations and physics grounded modeling strategies informed by structural information.