Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • MD-PhD Student
  • Medical Staff
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • MD-PhD Student
  • Medical Staff
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : PLoS Computational Biology

Compression-based inference of network motif sets

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in PLoS Computational Biology - 10 Oct 2024

Alexis Bénichou, Jean-Baptiste Masson, Christian L. Vestergaard

Link to HAL – hal-04733164

Link to DOI – 10.1371/journal.pcbi.1012460

PLoS Computational Biology, 2024, 20 (10), pp.e1012460. ⟨10.1371/journal.pcbi.1012460⟩

Physical and functional constraints on biological networks lead to complex topological patterns across multiple scales in their organization. A particular type of higher-order network feature that has received considerable interest is network motifs, defined as statistically regular subgraphs. These may implement fundamental logical and computational circuits and are referred to as “building blocks of complex networks”. Their well-defined structures and small sizes also enable the testing of their functions in synthetic and natural biological experiments. Here, we develop a framework for motif mining based on lossless network compression using subgraph contractions. This provides an alternative definition of motif significance which allows us to compare different motifs and select the collectively most significant set of motifs as well as other prominent network features in terms of their combined compression of the network. Our approach inherently accounts for multiple testing and correlations between subgraphs and does not rely on a priori specification of an appropriate null model. It thus overcomes common problems in hypothesis testing-based motif analysis and guarantees robust statistical inference. We validate our methodology on numerical data and then apply it on synaptic-resolution biological neural networks, as a medium for comparative connectomics, by evaluating their respective compressibility and characterize their inferred circuit motifs.