Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : European journal of immunology

Common cytokine receptor gamma chain (gammac)-deficient B cells persist in T cell-deficient gammac-mice and respond to a T-independent antigen

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in European journal of immunology - 01 Jun 2000

Vosshenrich CA, Sharara LI, Guy-Grand D, Rajewsky K, Müller W, Di Santo JP

Link to Pubmed [PMID] – 10898497

Eur. J. Immunol. 2000 Jun;30(6):1614-22

Defects in the common cytokine receptor gamma chain (gammac) in man result in X-linked severe combined immunodeficiency disease (SCIDX1) characterized by an absence of alphabeta T cells, gammadelta T cells and NK cells, with the presence of circulating B cells. Mice made deficient for gammac lack gammadelta T cells and NK cells, but in contrast to SCIDX1 patients have appreciable numbers of alphabeta T cells, while B cells are reduced about tenfold in numbers and disappear with age. Here we show that when gammac- mice are rendered T cell deficient, B cell numbers are still reduced but the age-dependent loss of B cells does not occur. The peripheral B cells which persisted in gammac-/ nude and gammac-/TCRbeta-/- mice were able to respond to mitogen stimulation in vitro and to mount antigen-specific T-independent Ig responses in vivo. These results demonstrate that gammac- B cells are functionally competent and suggest that residual alphabeta T cells are implicated in the B cell loss in gammac mice. The gammac-/nude and gammac-/TCRbeta-/- mice provide new models to dissect the role of gammac-dependent receptors during murine B cell differentiation.