Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : PLoS genetics

Classification of non-coding variants with high pathogenic impact.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in PLoS genetics - 01 Apr 2022

Moyon L, Berthelot C, Louis A, Nguyen NTT, Roest Crollius H,

Link to Pubmed [PMID] – 35486646

Link to DOI – e101019110.1371/journal.pgen.1010191

PLoS Genet 2022 Apr; 18(4): e1010191

Whole genome sequencing is increasingly used to diagnose medical conditions of genetic origin. While both coding and non-coding DNA variants contribute to a wide range of diseases, most patients who receive a WGS-based diagnosis today harbour a protein-coding mutation. Functional interpretation and prioritization of non-coding variants represents a persistent challenge, and disease-causing non-coding variants remain largely unidentified. Depending on the disease, WGS fails to identify a candidate variant in 20-80% of patients, severely limiting the usefulness of sequencing for personalised medicine. Here we present FINSURF, a machine-learning approach to predict the functional impact of non-coding variants in regulatory regions. FINSURF outperforms state-of-the-art methods, owing in particular to optimized control variants selection during training. In addition to ranking candidate variants, FINSURF breaks down the score for each variant into contributions from individual annotations, facilitating the evaluation of their functional relevance. We applied FINSURF to a diverse set of 30 diseases with described causative non-coding mutations, and correctly identified the disease-causative non-coding variant within the ten top hits in 22 cases. FINSURF is implemented as an online server to as well as custom browser tracks, and provides a quick and efficient solution to prioritize candidate non-coding variants in realistic clinical settings.