Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : International journal of molecular sciences

Chelator PBT2 Forms a Ternary Cu2+ Complex with β-Amyloid That Has High Stability but Low Specificity.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in International journal of molecular sciences - 25 May 2023

Drew SC

Link to Pubmed [PMID] – 37298218

Link to DOI – 10.3390/ijms24119267

Int J Mol Sci 2023 May; 24(11):

The metal chelator PBT2 (5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline) acts as a terdentate ligand capable of forming binary and ternary Cu2+ complexes. It was clinically trialed as an Alzheimer’s disease (AD) therapy but failed to progress beyond phase II. The β-amyloid (Aβ) peptide associated with AD was recently concluded to form a unique Cu(Aβ) complex that is inaccessible to PBT2. Herein, it is shown that the species ascribed to this binary Cu(Aβ) complex in fact corresponds to ternary Cu(PBT2)NImAβ complexes formed by the anchoring of Cu(PBT2) on imine nitrogen (NIm) donors of His side chains. The primary site of ternary complex formation is His6, with a conditional stepwise formation constant at pH 7.4 (Kc [M-1]) of logKc = 6.4 ± 0.1, and a second site is supplied by His13 or His14 (logKc = 4.4 ± 0.1). The stability of Cu(PBT2)NImH13/14 is comparable with that of the simplest Cu(PBT2)NIm complexes involving the NIm coordination of free imidazole (logKc = 4.22 ± 0.09) and histamine (logKc = 4.00 ± 0.05). The 100-fold larger formation constant for Cu(PBT2)NImH6 indicates that outer-sphere ligand-peptide interactions strongly stabilize its structure. Despite the relatively high stability of Cu(PBT2)NImH6, PBT2 is a promiscuous chelator capable of forming a ternary Cu(PBT2)NIm complex with any ligand containing an NIm donor. These ligands include histamine, L-His, and ubiquitous His side chains of peptides and proteins in the extracellular milieu, whose combined effect should outweigh that of a single Cu(PBT2)NImH6 complex regardless of its stability. We therefore conclude that PBT2 is capable of accessing Cu(Aβ) complexes with high stability but low specificity. The results have implications for future AD therapeutic strategies and understanding the role of PBT2 in the bulk transport of transition metal ions. Given the repurposing of PBT2 as a drug for breaking antibiotic resistance, ternary Cu(PBT2)NIm and analogous Zn(PBT2)NIm complexes may be relevant to its antimicrobial properties.