Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Marie Prévost, Institut Pasteur
Image of a portion of a Xenopus oocyte expressing a channel receptor.
Publication : Pharmacology, biochemistry, and behavior

CCKA, but not CCKB, agonists suppress the hyperlocomotion induced by endogenous enkephalins, protected from enzymatic degradation by systemic RB 101

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Pharmacology, biochemistry, and behavior - 01 Feb 1995

Dauge V, Corringer PJ, Roques BP

Link to Pubmed [PMID] – 7740050

Pharmacol. Biochem. Behav. 1995 Feb;50(2):133-9

Interactions between CCKergic and enkephalinergic systems were studied in mice using behavioral responses measured in Animex. The hyperlocomotion induced by 5 mg/kg of RB 101, a mixed inhibitor of enkephalin-degrading enzymes able to cross the blood-brain barrier, was previously shown to be mediated by delta-opioid receptor stimulation. The IP administration of a CCKA agonist, Boc-Tyr-Lys-(CONH-o-tolyl)-Asp-Phe-NH2 (0.1, 1, 10 micrograms/kg), suppressed the hyperlocomotion produced by IV injection of 5 mg/kg of RB 101. The effect of the CCKA agonist was suppressed by a selective CCKA antagonist, devazepide, injected IP at doses of 20 and 200 micrograms/kg and was potentiated by the selective delta-opioid antagonist naltrindole at the doses of 0.03 mg/kg. IP injection of the selective CCKB agonist BC 264 (0.1-1 mg/kg) did not modify the RB 101-induced hyperlocomotor effect. These results reinforce the observed physiological antagonism between the endogenous CCK and opioid systems but are at variance with the responses measured in stressful conditions. It is concluded that CCKA, but not CCKB, receptor activation counteracts the opioid-related hyperlocomotion.

http://www.ncbi.nlm.nih.gov/pubmed/7740050