Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Department Manager
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Department Manager
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Proteomics

Carbon source-induced reprogramming of the cell wall proteome and secretome modulates the adherence and drug resistance of the fungal pathogen Candida albicans

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Proteomics - 01 Nov 2012

Ene IV, Heilmann CJ, Sorgo AG, Walker LA, de Koster CG, Munro CA, Klis FM, Brown AJ

Link to Pubmed [PMID] – 22997008

Link to DOI – 10.1002/pmic.201200228

Proteomics 2012 Nov; 12(21): 3164-79

The major fungal pathogen Candida albicans can occupy diverse microenvironments in its human host. During colonization of the gastrointestinal or urogenital tracts, mucosal surfaces, bloodstream, and internal organs, C. albicans thrives in niches that differ with respect to available nutrients and local environmental stresses. Although most studies are performed on glucose-grown cells, changes in carbon source dramatically affect cell wall architecture, stress responses, and drug resistance. We show that growth on the physiologically relevant carboxylic acid, lactate, has a significant impact on the C. albicans cell wall proteome and secretome. The regulation of cell wall structural proteins (e.g. Cht1, Phr1, Phr2, Pir1) correlated with extensive cell wall remodeling in lactate-grown cells and with their increased resistance to stresses and antifungal drugs, compared with glucose-grown cells. Moreover, changes in other proteins (e.g. Als2, Gca1, Phr1, Sap9) correlated with the increased adherence and biofilm formation of lactate-grown cells. We identified mating and pheromone-regulated proteins that were exclusive to lactate-grown cells (e.g. Op4, Pga31, Pry1, Scw4, Yps7) as well as mucosa-specific and other niche-specific factors such as Lip4, Pga4, Plb5, and Sap7. The analysis of the corresponding null mutants confirmed that many of these proteins contribute to C. albicans adherence, stress, and antifungal drug resistance. Therefore, the cell wall proteome and secretome display considerable plasticity in response to carbon source. This plasticity influences important fitness and virulence attributes known to modulate the behavior of C. albicans in different host microenvironments during infection.

https://pubmed.ncbi.nlm.nih.gov/22997008