Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Journal of bacteriology

Brucella-Salmonella lipopolysaccharide chimeras are less permeable to hydrophobic probes and more sensitive to cationic peptides and EDTA than are their native Brucella sp. counterparts

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of bacteriology - 01 Oct 1996

Freer E, Moreno E, Moriyón I, Pizarro-Cerdá J, Weintraub A, Gorvel JP

Link to Pubmed [PMID] – 8830680

J. Bacteriol. 1996 Oct;178(20):5867-76

A rough (R) Brucella abortus 45/20 mutant was more sensitive to the bactericidal activity of polymyxin B and lactoferricin B than was its smooth (S) counterpart but considerably more resistant than Salmonella montevideo. The outer membrane (OM) and isolated lipopolysaccharide (LPS) of S. montevideo showed a higher affinity for these cationic peptides than did the corresponding B. abortus OM and LPS. We took advantage of the moderate sensitivity of R B. abortus to cationic peptides to construct live R B. abortus-S-LPS chimeras to test the activities of polymyxin B, lactoferricin B, and EDTA. Homogeneous and abundant peripheral distribution of the heterologous S-LPS was observed on the surface of the chimeras, and this coating had no effect on the viability or morphology of the cells. When the heterologous LPS corresponded to the less sensitive bacterium S B. abortus S19, the chimeras were more resistant to cationic peptides; in contrast, when the S-LPS was from the more sensitive bacterium S. montevideo, the chimeras were more susceptible to the action of peptides and EDTA. A direct correlation between the amount of heterologous S-LPS on the surface of chimeric Brucella cells and peptide sensitivity was observed. Whereas the damage produced by polymyxin B in S. montevideo and B. abortus-S. montevideo S-LPS chimeras was manifested mainly as OM blebbing and inner membrane rolling, lactoferricin B caused inner membrane detachment, vacuolization, and the formation of internal electron-dense granules in these cells. Native S and R B. abortus strains were permeable to the hydrophobic probe N-phenyl-1-naphthylamine (NPN). In contrast, only reduced amounts of NPN partitioned into the OMs of the S. montevideo and B. abortus-S. montevideo S-LPS chimeras. Following peptide exposure, accelerated NPN uptake similar to that observed for S. montevideo was detected for the B. abortus-S. montevideo LPS chimeras. The partition of NPN into native or EDTA-, polymyxin B-, or lactoferricin B-treated LPS micelles of S. montevideo or B. abortus mimicked the effects observed with intact cells, and this was confirmed by using micelle hybrids of B. abortus and S. montevideo LPSs. The results showed that LPS is the main cause of B. abortus’ resistance to bactericidal cationic peptides, the OM-disturbing action of divalent cationic chelants, and OM permeability to hydrophobic substances. It is proposed that these three features are related to the ability of Brucella bacteria to multiply within phagocytes.

http://www.ncbi.nlm.nih.gov/pubmed/8830680