Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© A-M. Pais-Correia, M-I. Thoulouze, A. Alcover, A. Gessain
Mise en évidence de structures de type "biofilm ", formées par le rétrovirus HTLV-1 générés par des cellules infectées (cellules du haut), qui ont été transmis à un autre lymphocyte (cellule du bas). Micrographie en microscopie électronique à balayage. Image colorisée.
Publication : Advanced healthcare materials

Atmospheric Plasma Deposition of Methacrylate Layers Containing Catechol/Quinone Groups: An Alternative to Polydopamine Bioconjugation for Biomedical Applications.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Advanced healthcare materials - 01 Jun 2018

Czuba U, Quintana R, De Pauw-Gillet MC, Bourguignon M, Moreno-Couranjou M, Alexandre M, Detrembleur C, Choquet P,

Link to Pubmed [PMID] – 29577666

Link to DOI – 10.1002/adhm.201701059

Adv Healthc Mater 2018 Jun; 7(11): e1701059

Bioconjugation of enzymes on coatings based on polydopamine (PDA) layers is an appealing approach to control biological responses on biomedical implant surfaces. As alternative to PDA wet deposition, a fast, solvent-free, and dynamic deposition approach based on atmospheric-pressure plasma dielectric barrier discharge process is considered to deposit on metallic surfaces acrylic-based interlayers containing highly chemically reactive catechol/quinone groups. A biomimetic approach based on covalent immobilization of Dispersin B, an enzyme with antibiofilm properties, shows the bioconjugation potential of the novel plasma polymer layers. The excellent antibiofilm activity against Staphylococcus epidermidis is comparable to the PDA-based layers prepared by wet chemical methods with slow deposition rates. A study of preosteoblastic MG-63 human cell line viability and adhesion properties on plasma polymer layers demonstrates early interaction required for biomedical applications.