Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : The journal of physical chemistry. B

Assigning structures to gas-phase peptide cations and cation-radicals. An infrared multiphoton dissociation, ion mobility, electron transfer, and computational study of a histidine peptide ion

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in The journal of physical chemistry. B - 06 Mar 2012

Moss CL, Chamot-Rooke J, Nicol E, Brown J, Campuzano I, Richardson K, Williams JP, Bush MF, Bythell B, Paizs B, Turecek F

Link to Pubmed [PMID] – 22364440

J Phys Chem B 2012 Mar;116(10):3445-56

Infrared multiphoton dissociation (IRMPD) spectroscopy, using a free-electron laser, and ion mobility measurements, using both drift-cell and traveling-wave instruments, were used to investigate the structure of gas-phase peptide (AAHAL + 2H)(2+) ions produced by electrospray ionization. The experimental data from the IRMPD spectra and collisional cross section (Ω) measurements were consistent with the respective infrared spectra and Ω calculated for the lowest-energy peptide ion conformer obtained by extensive molecular dynamics searches and combined density functional theory and ab initio geometry optimizations and energy calculations. Traveling-wave ion mobility measurements were employed to obtain the Ω of charge-reduced peptide cation-radicals, (AAHAL + 2H)(+●), and the c(3), c(4), z(3), and z(4) fragments from electron-transfer dissociation (ETD) of (AAHAL + 2H)(2+). The experimental Ω for the ETD charge-reduced and fragment ions were consistent with the values calculated for fully optimized ion structures and indicated that the ions retained specific hydrogen bonding motifs from the precursor ion. In particular, the Ω for the doubly protonated ions and charge-reduced cation-radicals were nearly identical, indicating negligible unfolding and small secondary structure changes upon electron transfer. The experimental Ω for the (AAHAL + 2H)(+●) cation-radicals were compatible with both zwitterionic and histidine radical structures formed by electron attachment to different sites in the precursor ion, but did not allow their distinction. The best agreement with the experimental Ω was found for ion structures fully optimized with M06-2X/6-31+G(d,p) and using both projection approximation and trajectory methods to calculate the theoretical Ω values.

http://www.ncbi.nlm.nih.gov/pubmed/22364440