Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Molecular pharmacology

Arachidonic acid differentially affects basal and lipopolysaccharide-induced sPLA(2)-IIA expression in alveolar macrophages through NF-kappaB and PPAR-gamma-dependent pathways

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Molecular pharmacology - 01 Apr 2002

Alaoui-El-Azher M, Wu Y, Havet N, Israël A, Lilienbaum A, Touqui L

Link to Pubmed [PMID] – 11901217

Mol. Pharmacol. 2002 Apr;61(4):786-94

Secretory type IIA phospholipase A(2) (sPLA(2)-IIA) is a critical enzyme involved in inflammatory diseases. We have previously identified alveolar macrophages (AMs) as the major pulmonary source of lipopolysaccharide (LPS)-induced sPLA(2)-IIA expression in a guinea pig model of acute lung injury (ALI). Here, we examined the role of arachidonic acid (AA) in the regulation of basal and LPS-induced sPLA(2)-IIA expression in AMs. We showed that both AA and its nonmetabolizable analog, 5,8,11,14-eicosatetraynoic acid (ETYA), inhibited sPLA(2)-IIA synthesis in unstimulated AMs. However, only AA inhibited sPLA(2)-IIA expression in LPS-stimulated cells, suggesting that this effect requires metabolic conversion of AA. Indeed, cyclooxygenase inhibitors abolished this down-regulation. Prostaglandins PGE(2), PGA(2), and 15d-PGJ(2) also inhibited the LPS-induced sPLA(2)-IIA expression. Nuclear factor-kappaB (NF-kappaB) was found to regulate sPLA(2)-IIA expression in AMs. Both AA and ETYA inhibited basal activation of NF-kappaB but had no effect on LPS-induced NF-kappaB translocation, suggesting that suppression of sPLA(2)-IIA synthesis by AA in LPS-stimulated cells occurs via a NF-kappaB-independent pathway. 15-Deoxy-Delta(12,14)-PGJ(2) and ciglitazone, which are, respectively, natural and synthetic ligands for peroxisome proliferator-activated receptor-gamma (PPAR-gamma), inhibited LPS-induced sPLA(2)-IIA synthesis, whereas PPAR-alpha ligands were ineffective. Moreover, electrophoretic mobility shift assay showed PPAR activation by AA and PPAR-gamma ligands in LPS-stimulated AMs. Our results suggest that the down-regulation of basal sPLA(2)-IIA expression is unrelated to the metabolic conversion of AA but is dependent on the impairment of NF-kappaB activation. In contrast, the inhibition of LPS-stimulated sPLA(2)-IIA expression is mediated by cyclooxygenase-derived metabolites of AA and involves a PPAR-gamma-dependent pathway. These findings provide new insights for the treatment of ALI.