Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Valérie Choumet
Mosquitoes were orally infected with the chikungunya virus. Midguts were dissected at day 5 post-infection, fixed and permeabilised. Virus is shown in red (anti-E2 protein, cyanine 3), the actin network in green (phalloidin 548) and nuclei in blue (DAPI).
Publication : Journal of the American Chemical Society

Applying pairwise combinations of amino acid mutations for sorting out highly efficient glucosylation tools for chemo-enzymatic synthesis of bacterial oligosaccharides

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of the American Chemical Society - 30 Oct 2012

Champion E, Guérin F, Moulis C, Barbe S, Tran TH, Morel S, Descroix K, Monsan P, Mourey L, Mulard LA, Tranier S, Remaud-Siméon M, André I

Link to Pubmed [PMID] – 23072374

J. Am. Chem. Soc. 2012 Nov;134(45):18677-88

Iterative saturation mutagenesis and combinatorial active site saturation focused on vicinal amino acids were used to alter the acceptor specificity of amylosucrase from Neisseria polysaccharea , a sucrose-utilizing α-transglucosidase, and sort out improved variants. From the screening of three semirational sublibraries accounting in total for 20,000 variants, we report here the isolation of three double mutants of N. polysaccharea amylosucrase displaying a spectacular specificity enhancement toward both sucrose, the donor substrate, and the allyl 2-acetamido-2-deoxy-α-D-glucopyranoside acceptor as compared to the wild-type enzyme. Such levels of activity improvement have never been reported before for this class of carbohydrate-active enzymes. X-ray structure of the best performing enzymes supported by molecular dynamics simulations showed local rigidity of the -1 subsite as well as flexibility of loops involved in active site topology, which both account for the enhanced catalytic performances of the mutants. The study well illustrates the importance of taking into account the local conformation of catalytic residues as well as protein dynamics during the catalytic process, when designing enzyme libraries.

http://www.ncbi.nlm.nih.gov/pubmed/23072374